Celem studiów Inżynieria Systemów Zasilania Wodorem  jest przekazanie specjalistycznej wiedzy i umiejętności z zakresu nowoczesnych systemów zasilania wodorem, obejmującego zagadnienia:

  • wytwarzania, przechowywania i transportu wodoru, w szczególności przegląd technologii produkcji wodoru z odnawialnych i nieodnawialnych zasobów; metody otrzymywania wodoru z paliw kopalnianych lub biomasy, mikrobiologiczne metody produkcji wodoru, elektrolizy i termolizy wody oraz metody termochemiczne; metody produkcji wodoru pod względem kosztów i oceny ich wpływu na środowisko;

  • tworzenia mieszanki i systemów spalania silników gazowych; przekazanie wiedzy w zakresie wpływu pracy silnika zasilanego paliwami gazowymi na środowisko naturalne; wskazanie zależności pomiędzy parametrami charakteryzującymi paliwa gazowe a wymaganiami dotyczącymi konstrukcji układów wtryskowych oraz zapłonowych; przekazanie informacji związanych z wpływem parametrów sterujących pracą silnika gazowego na jego osiągi;

  • podział ogniw paliwowych; budowa pojedynczego ogniwa, stosu, pakietu ogniw, w tym lokalizacja komponentów oraz systemy zabezpieczeń; przedstawienie zagadnień związanych z zastosowaniem ogniw paliwowych w środkach transportu; elementy eksploatacji ogniw paliwowych i ich skutki; badania ogniw paliwowych zasilanych różnymi paliwami; charakterystyki napięciowo-prądowe; moc użyteczna ogniw paliwowych; możliwości obciążania ogniw paliwowych, charakterystyki odpowiedzi na obciążenie;

  • zagadnienia związane z normami w ramach certyfikacji układów wodorowych; elementów wodorowego układu napędowego; magazynowania wodoru w pojazdach; przesyłu wodoru w pojazdach; dostosowania hal warsztatowych do napraw pojazdów o napędzie wodorowym;

  • uwarunkowania prawne i certyfikacyjne dotyczące stacji tankowania wodorem; procedury homologacyjne pojazdów uwzględniające napęd wodorowy; uwarunkowania prawne i certyfikacja instalacji do produkcji zielonego wodoru zawierających panele fotowoltaiczne oraz turbiny wiatrowe;

  • modelowanie i symulacja procesów związanych z zasilaniem i spalaniem wodoru: cele modelowania i symulacji, modele równowagowe i nierównowagowe, modelowanie 2D oraz 3D procesów zasilania wodorem o spalania w przestrzeniach zamkniętych; modelowanie wtryski i spalania w silniku;

  • sektor wodorowy – struktura i globalny zasięg; perspektywy przyszłych możliwości; programy zrównoważonego rozwoju; zielony wodór: wytwarzanego w oparciu o odnawialne źródła energii; dekarbonizacja branż: hutnictwo, ciężki transport drogowy i morski czy produkcja cementu – analiza rynku polskiego i światowego; przegląd wybranych metod zastosowania wodoru pochodzącego ze źródeł odnawialnych; ocena sprawności systemowej; efektywność łańcucha wodorowego; sprawność procesu; warianty wykorzystania wodoru w motoryzacji indywidualnej oraz energetyce; postęp technologiczny, świadomość ekologiczna; wodór jako zrównoważone, odpowiedzialne paliwo; problemy magazynowania i produkcji;

  • systemy zarządzania energią napędów zasilanych wodorem, w tym; chemiczne źródła prądu, rodzaje akumulatorów energii elektrycznej, konstrukcje ogniw paliwowych; układy wtryskowe, układy zasilania powietrzem, konwertery energii, akumulacja energii; działanie elektrolizera, uwzględnienie energii z OZE, absorbcja; bilans energetyczny ogniwa paliwowego w wybranych stanach pracy; charakterystyka ładowania akumulatorów w warunkach jazdy i postoju;

  • podstawowe pojęcia dotyczące zarządzania ryzykiem i ich rozumienie; metody zarządzania ryzykiem zagrożeń; idea i koncepcja identyfikacji zagrożeń w systemach technicznych; metody identyfikacji zagrożeń; proces oceny, metody szacowania i wyceny ryzyka zagrożeń z wykorzystaniem metod jakościowych (matrycowych) i ilościowych; taktyki postępowania wobec ryzyka zagrożeń.